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SOFTWARE SYSTEM ARCHITECTURE DEVELOPMENT  
FOR INTELLIGENT ANALYSIS OF WEB APPLICATION 
PERFORMANCE METRICS

Today the number of web applications that process large amounts of data is increasing, which creates new 
challenges for developers and users. Web applications that handle big data are becoming an essential part of 
business, government, and everyday life, enhancing efficiency, accuracy, and speed of decision-making. This 
brings numerous problems, such as ensuring data security and confidentiality, efficient processing and storage 
of large volumes of information, and the need for continuous monitoring and optimization of web application 
performance. Resource management and energy efficiency are becoming particularly relevant in the context of 
energy savings. Solving these problems requires the use of the latest technologies, such as intelligent monitoring 
and analysis systems, which help ensure the stable and efficient operation of web applications in conditions of 
constantly increasing data volumes and task complexity. Addressing web application performance issues through 
intelligent monitoring systems will enable developers to quickly and accurately identify bottlenecks and optimize 
code, which in turn ensures a better user experience and reduces maintenance costs. Unresolved issues include 
the complexity of integrating new technologies into existing systems, the need to consider various factors affecting 
performance, and ensuring a high level of security and data confidentiality during monitoring.

The article analyzes existing software solutions such as Google Lighthouse, Apache JMeter, New Relic, 
Dynatrace, GTmetrix, Pingdom, AppDynamics, WebPage Test, Sentry, and LoadRunner, their functional 
capabilities, main advantages, and disadvantages. It examines the possibilities of using machine learning and 
artificial intelligence technologies in the considered software systems. Based on the analysis, a software system 
architecture is proposed for analyzing the performance of web applications written in JavaScript, which allows 
for the collection of numerical data on the factors affecting the performance of the web application, performing 
regression analysis to determine the assessment of the influence of factors, clustering and classification of the 
processed data for the correctness of the allocation of recommendations for developers, which must be used 
in order to improve the performance of the web application and reduce the load on the web server. According 
to the conducted research, the use of machine learning methods in software systems for web application 
performance analytics can increase the performance of web applications by an average of 20%.

Key words: software system architecture, web application performance evaluation, JavaScript, machine 
learning, AI, regression analysis, clustering, classification, neural networks.

Introduction. Problem Statement. Monitoring the 
performance of web applications is critical to ensuring 
the stable operation of software on the Internet. In 
modern realities, when saving resources becomes 
critically important, optimizing the performance of web 
applications allows to reduce the load on servers and 
infrastructure, which, in turn, contributes to reducing 
energy consumption. This is especially relevant for 
developers who work with the JavaScript language, 
as web applications in this programming language 
are extremely popular both in Ukraine and around 
the world. According to statistics, more than 70% of 
modern web applications use the JavaScript language 
for the development of the client part, a significant share 

of server solutions is also based on Node.js. In Ukraine, 
this trend is supported by the wide implementation of 
web technologies in various industries, including the 
financial sector, education, e-commerce. Using machine 
learning (ML) techniques to evaluate the performance of 
web applications allows not only to identify bottlenecks 
and problems in the execution of the code, but also to 
predict potential performance problems, which allows to 
take early measures to eliminate them. The development 
of such a software system is not only relevant from a 
technical point of view, but also contributes to the overall 
efficiency of the use of resources, which is an important 
contribution to the preservation of the country's energy 
resources. 
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The main goal of the article is designing a 
software system architecture for intelligent analysis 
of the performance of web applications written in the 
JavaScript language.

Related research. In the article [1] authors analyze 
various techniques, including caching, compression, 
Content Delivery Networks (CDNs), and tools such 
as WebPageTest and YSlow. The research aims to 
help Web developers and performance engineers 
optimize their websites for improved search engine 
rankings.

The paper [2] presents a research on optimizing 
trace visualizations for microservices performance 
analysis. The authors investigate current limitations in 
trace visualization tools and propose novel techniques 
for effective performance analysis. 

The research paper [3] explored the use of 
Dynatrace monitoring data to generate performance 
models for Java EE applications. The research aimed 
to improve the understanding and optimization of 
application performance by leveraging monitoring 
data and developing accurate performance models. 

The research [4] investigates the process of 
storing and managing data in the client side of web 
applications, focusing on software methods for local 
state management, and demonstrates that using an 
atomic approach to data state management with the 

React Context API reduces data processing time by 
17% compared to popular libraries such as Redux, 
MobXState-Tree, and Recoil, thereby optimizing state 
management and improving overall performance.

Existing software solutions аnalysis
Google Lighthouse is an open source software tool 

that evaluates performance, accessibility, SEO and 
other aspects of web applications. Google Lighthouse 
performs automated audits to evaluate various 
indicators, works on the basis of Chrome DevTools 
(Fig. 1). Google Lighthouse specializes in client-
side performance analysis, providing detailed reports 
on page rendering, load times, image optimization, 
resource size, and overall page speed. 

Google Lighthouse has a limited ability to 
analyze server performance, it can provide general 
recommendations for download speed but does not 
provide in-depth analysis [5]. 

Apache JMeter is a powerful web application load 
testing and performance measurement tool that uses 
the Java language to create load scripts and can test 
various protocols, including HTTP, HTTPS, SOAP, 
FTP. JMeter is less suitable for analyzing client-side 
performance. The main application of the tool is 
server load and performance testing. JMeter is used 
for load testing servers, including web servers, APIs, 
and databases. The tool can create a heavy load for 

 

 
 Fig. 1. Google Lighthouse monitoring results
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testing the scalability and performance of the backend 
of a web application [6].

New Relic is a cloud platform for monitoring the 
performance of web applications in real-time. Uses 
agents integrated with server-side programming 
languages (Java, Python, Node.js, Ruby, etc.) to 
collect data. New Relic offers front-end performance 
monitoring tools, including Real User Metrics 
(RUM), which show how real users interact with 
a web application. New Relic provides deep 
back-end monitoring, including server, database, 
and infrastructure performance. This allows the 
identification of bottlenecks and performance 
problems on the server side [7].

Dynatrace is a commercial application performance 
monitoring tool, including a detailed analysis of each 
transaction, using AI to analyze performance, and 
agents to collect data from various system components. 
Dynatrace offers comprehensive client-side monitoring, 
including analysis of page load times, user interactions, 
and JavaScript performance metrics [8].

Dynatrace provides deep back-end analysis, 
including monitoring of servers, databases, 
microservices, and containers. AI algorithms help 
to automatically identify problems and causes of 
productivity decline (Fig. 2).

GTmetrix is a tool for analyzing the speed of loading 
web pages and providing detailed reports, which uses an 
API to receive data from Google Lighthouse and other 
sources. GTmetrix focuses on client-side performance 
analysis, using Lighthouse and PageSpeed tools to 
provide detailed reports on page rendering, resource 
loading, and optimization [9].

Pingdom is a tool for monitoring the availability 
and performance of websites. The software system 

uses global servers for availability monitoring, and 
APIs for integration with other systems. Pingdom 
provides tools to monitor page load speed and client-
side performance and uses real user data to evaluate 
user interaction with the web application. Pingdom 
does not specialize in backend analysis but only 
provides basic information about server availability 
and response time [10].

AppDynamics is a commercial application 
performance monitoring and user experience 
management platform that uses agents to collect 
metrics from various system components and 
analytical tools for data analysis. AppDynamics 
offers tools for monitoring client-side performance, 
including real-user metrics and JavaScript analysis. 
AppDynamics also provides deep back-end 
monitoring, including application, database, and 
infrastructure performance analysis. This allows for 
identifying bottlenecks and optimizing the client part 
of the software [11].

WebPageTest is an open-source tool for measuring 
web page performance, providing detailed reports, 
using browsers for testing and APIs for automation. 
WebPageTest specializes in analyzing the performance 
of the client side of a web application, offers detailed 
reports on page load times, resource optimization, and 
rendering, and has limited capabilities for analyzing 
server performance [12].

Sentry is a commercial platform that monitors 
errors and application performance. The advantage of 
this platform is integration with various programming 
languages and frameworks, and analysis of logs 
and metrics. Sentry provides front-end error and 
performance monitoring, including JavaScript 
analysis and real-time error tracking. Sentry also 

 
Fig. 2. Dynatrace monitoring process [8]
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supports back-end monitoring, including server errors 
and back-end performance [13].

LoadRunner is a commercial load-testing tool 
created by Micro Focus that supports various 
protocols, and load scenarios based on real user 
actions. LoadRunner is less suitable for client-side 
performance analysis, and specializes in server load 
testing, providing scalable tests to determine server 
performance under heavy load [14].

Table 1 shows the capabilities of software systems 
to analyze the performance of client and server web 
applications written in JavaScript.

Google Lighthouse, GTmetrix, WebPageTest, 
and Pingdom are compatible with major browsers 
such as Chrome, Firefox, Safari, and Edge. Apache 
JMeter primarily tests web applications and APIs, not 
browser functionality.

New Relic and Dynatrace provide cross-browser 
compatibility for monitoring JavaScript errors and 
user interactions in Chrome, Firefox, Safari, and 
Edge. AppDynamics supports monitoring in all 
major browsers. Sentry integrates with most modern 
browsers, including Chrome, Firefox, Safari, and 
Edge, to catch JavaScript errors. LoadRunner focuses 
on performance testing and is compatible with web 
applications running in any browser, but does not 
provide browser-specific integration features. 

 Google Lighthouse relies on Chrome DevTools, 
limiting its integration flexibility with non-Chrome 
test environments. It may struggle with scalability 
for over 1,000 requests per minute and lacks support 
for large-scale distributed performance testing, 

problematic for web applications with more than 
100,000 daily requests. 

Apache JMeter requires significant configuration, 
is challenging for beginners, and its interface slows 
with large test plans. Though it supports distributed 
testing, managing multiple instances can be 
cumbersome, and handling over 10,000 concurrent 
users can bottleneck memory usage. 

New Relic's setup is complex, with proprietary 
limitations and high costs for over 500,000 daily 
requests, potentially leading to data processing limits. 
Dynatrace's complex setup and reliance on AI for 
analysis can obscure problem causes, with scalability 
issues due to high costs and significant data storage 
needs. GTmetrix's reliance on third-party tools limits 
customization, making it less suitable for large-scale 
testing of web applications with over 1 million daily 
requests.

Pingdom lacks deep server performance analysis 
and struggles with over 10,000 requests per second. 
AppDynamics offers comprehensive monitoring, but 
its high cost and decreased performance with over  
1 TB of data per month limit its appeal to small and 
medium enterprises.

WebPageTest lacks server-side tools and becomes 
resource-intensive with large sites having over  
1,000 elements per page. Sentry detects errors but can 
delay with over 50,000 events per minute. 

LoadRunner, while powerful, is complex and 
expensive, and its performance degrades with over  
1 million virtual users. As data volumes exceed 10 GB 
per day, performance bottlenecks require advanced 

Table 1
Capabilities of software systems for analyzing the performance of the client 

and server part of web applications and their main limitations

Software system Analysis  
of the client part

Analysis  
of the server part Disadvantages

Google Lighthouse + - May require expertise to interpret the results

Apache JMeter - + Difficulty setting up requires knowledge of Java 
programming language

New Relic + + High cost for large teams 
(from $99/month for each host)

Dynatrace + + High cost, complexity of configuration  
(from $69/month for each host)

GTmetrix + - Limitations of the free version
 (Pro plans from $10/month)

Pingdom + - High cost for advanced features 
(from $15/month)

AppDynamics + + High cost, complexity of setup
 (from $330/month)

WebPageTest + - Limited support for other protocols

Sentry + + High cost for large teams 
(from $29/month), limited functionality

LoadRunner - + High cost, complexity of setting 
(from $4000/year)
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data architectures like NoSQL, in-memory data grids, 
or cloud storage. Managing distributed components 
is challenging, necessitating robust orchestration and 
monitoring tools, and addressing network latency 
and data consistency issues is critical for maintaining 
system performance.

Using machine learning methods and АІ to 
evaluate the performance of web applications

Google Lighthouse uses АІ to analyze various 
web performance metrics and suggest specific 
improvements for optimization. For example, the 
system allows to identify resources that block 
rendering and recommend ways to postpone them, 
thus speeding up page load time. Regression analysis 
is used to predict the performance of web pages based 
on historical data. 

Google Lighthouse automatically tests web pages 
and collects various performance metrics such as 
First Contentful Paint (FCP), Time to Interactive 
(TTI), Largest Contentful Paint (LCP), Cumulative 
Layout Shift (CLS) and others. For example, over the 
past month, the Lighthouse system tested the page 
100 times and collected data on load time (FCP, TTI), 
size of downloaded resources, number of requests, 
etc. After collecting the data, Lighthouse applies 
regression analysis to identify patterns. For example, 
an analysis might show that increasing the size of 
images on a page by 1MB results in an increase in 
FCP load time of 200ms.

A regression model based on the collected data, 
where performance metrics are the dependent 
variables and factors such as image sizes, number of 
requests, file types, etc. are the independent variables. 
Based on the model, it is possible to predict the 
performance of web pages when certain parameters 
are changed. If we reduce the size of the images by 
500KB, the model can show that the FCP load time 
will decrease by 100ms. 

Web developers can use these predictions to 
optimize their pages. For example, they can decide 
to optimize images or reduce the number of HTTP 
requests based on predictions from regression 
analysis to improve overall page performance. Using 
regression analysis, Google Lighthouse can find that 
every additional 100KB of images adds 50ms to FCP's 
load time. Web developers can predict that reducing 
the total image size by 500KB can reduce FCP load 
times by 250ms. This provides concrete numbers to 
base optimization decisions on.

The use of regression analysis in Google 
Lighthouse allows not only to evaluate the current 
performance of web pages but also to predict how 
certain changes in the code and content will affect 

these indicators, which makes the optimization 
process more scientific and justified.

Random Forest in Google Lighthouse is used to 
classify and evaluate the impact of various factors on 
page performance. A random forest is an ensemble 
ML method consisting of many decision trees. Each 
tree is trained on different subsets of data and subsets 
of features, which allows the model to be resistant 
to overtraining and more accurate in general cases. 
A random forest models the relationship between 
a dependent variable (performance measures such 
as First Contentful Paint, Time to Interactive) and 
independent variables (factors affecting performance 
such as image size, number of HTTP requests, and 
script loading time).

Lighthouse collects data about web page 
performance, including performance metrics and the 
factors that influence them. For example, data about 
FCP, image size, number of requests, and loading time 
of scripts for 1000 web pages is collected. The data 
are divided into training and test samples. Prepared 
data can look like a table, where rows represent web 
pages and columns represent performance metrics 
and factors. 

A random forest is trained on the training sample. 
For example, 100 decision trees are created, where 
each tree is trained on a random subset of the data. 
A random forest model classifies and evaluates the 
impact of various factors on performance.

For example, the model might show that image size 
has the greatest impact on FCP, with an importance 
score of 0.45, number of requests at 0.30, and script 
load time at 0.25. The model uses a trained random 
forest to predict the performance of new web pages. 
For a web page with an image size of 1800 KB, a 
request count of 55, and a script load time of 1200 ms, 
the model predicts an FCP of 1600 ms.

Random Forest helps developers understand 
which factors most affect the performance of their 
web pages and predict how changes in those factors 
will affect performance metrics. This allows to make 
informed decisions to optimize and improve the speed 
of web applications.

GTmetrix uses ML algorithms to predict how 
changes to a website might affect its speed and user 
interaction.

Gradient boosting is   used to more accurately 
determine the factors that affect the performance of 
web pages. Gradient boosting is an ensemble ML 
technique that builds a model by successively adding 
weak models (such as decision trees) in such a way 
that each successive model tries to correct the errors 
of the previous one. GTmetrix collects web page 
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performance data, including performance metrics (eg 
Page Load Time, First Contentful Paint) and factors 
that affect them (eg image size, number of HTTP 
requests, script load time).

Gradient boosting in GTmetrix allows to accurately 
determine which factors have the greatest impact on 
web page performance. For example, if image size turns 
out to be the most important factor, developers can focus 
on optimizing images to improve page load times.

Classification is used to rank pages by performance 
and identify critical areas. GTmetrix uses various 
classification methods to analyze and rank web 
page performance, such as Decision Trees, Random 
Forest, and Support Vector Machine (SVM). Decision 
trees are used to identify the most important factors 
affecting web page performance. This helps to quickly 
identify bottlenecks and areas that need optimization. 
A random forest improves the accuracy of predictions 
by combining the results of many decision trees. 
This provides more reliable and stable performance 
analysis results. 

WebPageTest uses artificial intelligence (AI) 
to simulate various network conditions and user 
interactions, providing a more comprehensive 
analysis. Neural networks are used for complex 
analysis of the influence of various parameters on the 
performance of web pages.

Pingdom uses AI to continuously monitor 
website uptime and performance. The system can 
automatically alert users to performance issues 
and suggest potential fixes based on historical data 
patterns. If the server is often slow at a certain 
time, Pingdom can predict this and notify the user 
in advance. Time series analysis is used to predict 
downtime and website availability issues. Using 
ML techniques such as autocorrelation and moving 
averages, the system can detect patterns and anomalies 
in time series data. This allows Pingdom to predict 
potential downtime and availability issues, providing 
users with warnings and recommendations to avoid 
them. Logistic regression is used to identify the 
probability of problems based on historical data. The 
system analyzes various parameters such as response 
time, number of requests, throughput, and other 
performance indicators to estimate the probability 
of failures or downtime. Logistic regression can be 
used to create models that predict the risk of problems 
based on input data.

Apache JMeter mainly focuses on load and 
performance testing of web applications and APIs. 
By integrating ML, JMeter can detect anomalies 
in performance data, such as unexpected spikes 
in response time, and automatically flag them for 

further investigation. K-means clustering is used to 
group similar queries or transactions based on their 
performance and behavioral characteristics and 
to identify atypical test results that may indicate 
performance issues. When testing a web application, 
we can collect response time data for various requests. 
Using the K-means algorithm, these queries can be 
grouped into several clusters, such as fast, medium 
and slow queries. This allows to identify groups of 
requests that have similar performance and identify 
critical areas that need optimization. 

New Relic uses AI and ML for predictive analytics 
and performance monitoring. The system can 
automatically detect performance bottlenecks and 
provide recommendations to optimize web application 
performance. For example, New Relic can analyze 
transaction traces to pinpoint slow queries and suggest 
methods for indexing or optimizing queries. Linear 
regression is used in New Relic to analyze trends in 
performance data to predict future problems.

Dynatrace uses AI for root cause analysis 
and predictive analytics. Its Davis AI engine 
automatically correlates performance data across 
the entire application stack, identifying the root 
cause of problems without manual intervention. 
For example, if a specific microservice is causing 
slowdowns, Davis AI can highlight it and suggest 
steps to fix it. Recurrent neural networks (RNNs) are 
used to analyze time series and predict server loads. 
Reinforcement learning uses automatic changes in 
system configurations.

AppDynamics uses AI anomaly detection to 
monitor application performance, can automatically 
detect deviations from normal behavior, and 
perform detailed diagnostics. For example, if a 
certain transaction starts taking longer than usual, 
AppDynamics can flag this and offer insight into 
whether the problem is in the database, server, or 
network. A decision tree is used to identify critical 
paths in code that affect performance. Anomaly 
detection is used to automatically detect deviations in 
system performance.

Sentry integrates ML to prioritize and cluster bugs, 
helping developers focus on the most critical issues. 
For example, Sentry can automatically group similar 
bugs together and rank them based on their impact, 
allowing developers to prioritize the most pressing 
issues. Clustering is used to group similar errors and 
identify the root causes of problems. For this, clustering 
methods such as K-means or Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) 
are used. K-means clustering helps identify groups of 
similar errors based on their characteristics, such as 
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error messages and call stacks. DBSCAN is used to 
detect high-density clusters in error data, allowing the 
detection of sporadic or rare errors that may have a 
significant impact on the system. 

Deep learning in Sentry is used to automatically 
prioritize errors and their criticality. For example, 
RNNs can analyze a sequence of errors and identify 
patterns that allow predicting the probability of future 
failures. Convolutional Neural Networks (CNNs) can 
be applied to analyze logs and traces, automatically 
classifying errors according to their criticality. This 
allows developers quickly determine which errors 
have the greatest impact on the system.

LoadRunner uses AI to simulate realistic user 
behavior patterns and predict system performance 
under various loads. It can model complex user 
interactions and analyze how they affect system 
performance, helping to ensure that applications 
can handle real-world usage scenarios. Regression 
analysis is used to determine the effect of various 
factors on performance during stress tests. Anomaly 
detection is used to detect unexpected behaviors when 
testing a system under load.

Software system architecture designing for 
intelligent analysis of web application performance

In the research, we use regression analysis to 
predict the impact of changes on page performance. 
Regression analysis is used to predict the performance 
of web pages based on several independent variables. 

The main independent variables include: time to 
the first byte (Time to First Byte, TTFB), which 
is measured in milliseconds (ms) and indicates the 
time required by the server to respond; the loading 
time of the first content image (First Contentful 
Paint, FCP), also measured in milliseconds (ms) 
and indicates when the first image or text appears 
on the screen; speed index (Speed Index), which is 
measured in milliseconds (ms) and shows the speed of 
page content display; the number of HTTP requests 
(Number of Requests), measured by the number of 
requests and indicating the total number of requests 
required to download all page resources; and the total 
size of downloaded resources (Total Page Weight), 
measured in kilobytes (KB) or megabytes (MB) and 
indicate the total size of all downloaded resources. 
These variables are used to build a regression model 
that helps determine how each of these factors affects 
overall page performance, allowing for more accurate 
predictions and identifying underlying issues.

CNNs we use to analyze images and videos, 
which can be useful for evaluating visual aspects of 
web page performance, such as image and video load 
times. The CNN neural network allows to analyze 

screenshots of web pages at different stages of loading 
to discover which elements appear earlier or later and 
how this affects the user's perception. 

LSTM (Long Short-Term Memory) or GRU 
(Gated Recurrent Unit) are used to analyze data 
sequences. They are used for modeling user 
interaction, which is a sequence of actions. RNNs can 
model user click sequences and their site navigation, 
taking into account previous actions to predict next 
steps and assess how interface changes may affect 
overall performance.

Software system collects a large amount of data 
about user interaction with web pages, including 
loading times of various resources, clicks, page 
scrolling, etc. The data is cleaned and converted 
into a format suitable for training neural networks. 
For example, images can be normalized, and click 
sequences can be encoded.

CNNs are trained on images or videos to recognize 
patterns related to page load times and rendering. 
RNNs learn from sequences of clicks and other user 
interactions to understand behavioral patterns and 
predict future actions.

After training, models analyze new data about 
user interactions and network conditions. Simulating 
different scenarios (such as low network bandwidth) 
allows to evaluate how these conditions affect 
performance. Analysis results are used to generate 
performance optimization recommendations. If CNN 
finds that large images have a strong impact on load 
times, it can suggest optimizing the images or using 
responsive formats. According to the research, using 
neural networks, the performance of web applications 
can increase on average by 15-20%. Neural networks 
allow more accurate analysis of the impact of various 
parameters on the performance of web pages by 
modeling complex user interactions and network 
conditions.

Designing a software system architecture for 
evaluating the performance of web applications using 
regression analysis uses the integration of several 
components to provide data collection, processing, 
and analysis. The data obtained from such a model 
will be used in the sub calculations of the assessment 
of the impact of various factors on the system. Below 
is a list of such factors:

– server factors: include data on processor load 
time and the amount of RAM used;

– factors of the web application client: response 
time, request frequency, error frequency, session 
duration;

– data source factors: database query time, number 
of active connections;
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– infrastructure factors: server configuration, 
percentage of cached data, load distribution system 
performance;

– user factors: location, browser, device type;
– time factors: time of day, day of the week.
 A classification method should be used in the 

architecture of this system, this will help to divide the 
data into different categories or classes based on a set of 
input variables. Such separation will make it possible 
to provide system users with better recommendations 
for improving the performance of the web application. 
Decision trees are used to hierarchically divide data 
into subsets based on the values of the input variables. 
They work by building a hierarchical structure where 
each node represents a condition on one of the input 
variables and each branch is the result of that condition, 
eventually leading to leaves that contain the final 
solution or class.

 In the context of web applications, decision 
trees can be used to classify requests into different 
performance categories, such as fast, medium, or 
slow responses. With the help of the classification 
of requests, we can determine which of them load 
the system the most, and take measures to optimize 
their processing. This may include changes to the 
web application architecture, code improvements, or 
server configuration (Fig. 3).  

Research results. Сlassification methods 
provides more accurate predictions about web page 

performance and improve user experience, to 10-15% 
faster page load times and a better user experience, 
which in turn can lower bounce rates and increase 
web applications user satisfaction. 

Clustering helps identify patterns in query 
behavior that can point to specific conditions 
or configurations that are causing performance 
degradation. This, in turn, allows for more targeted 
and detailed optimization, which can reduce response 
time by 15-20% for the slowest requests.

The use of time series analysis and logistic 
regression allows for significant improvement in the 
management of website performance and availability. 
This provides in some cases to 20-30% reduction in 
downtime, which in turn increases the reliability and 
stability of websites, improving the user experience 
and reducing the financial losses associated with site 
unavailability.

With the help of linear regression, we can analyze 
the response time of requests and determine the 
growth trends of this indicator. If the regression model 
shows a steady increase in response time, this may 
signal potential performance issues that may arise 
in the future. Identifying such trends allows to take 
preventive measures, such as optimizing the code or 
increasing server resources, to avoid a decrease in the 
performance of the web application. Such forecasting 
helps reduce downtime by 10-15% and ensures more 
stable system operation.

 

Fig. 3. The proposed architecture of the software system for intelligent analysis  
of the performance of web applications 
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Deep Neural Networks (DNNs) are used for 
complex analysis and predictions, including user 
behavior and system load. DNNs can analyze historical 
data about server loads during peak periods and predict 
when similar peak loads can be expected next time. 
This allows a configuration of additional resources 
in advance or optimize existing ones to cope with the 
expected increase in load. As a result of such measures, 
system performance is improved during peak loads, 
reducing the risk of downtime and ensuring continuity of 
service to users. This approach can increase the overall 
efficiency of the system in some cases by 20-25%, 
which significantly improves the user experience.

Conclusions and future work. The article 
discusses the analysis of available software solutions 
for evaluating the performance of web applications. 
Not all considered software systems are equally 
well suited for analyzing the performance of web 
applications written in JavaScript. Some have 
strengths on the client side, others on the server side, 
and some offer comprehensive analysis. 

Google Lighthouse, GTmetrix, Pingdom, and 
WebPageTest are good for detailed client-side 
performance analysis but have limited capabilities 

for back-end analysis. Apache JMeter is a powerful 
tool for server load testing, but less suitable for client-
side analysis. New Relic, Dynatrace, AppDynamics, 
and Sentry provide end-to-end monitoring, covering 
both the client and backend, offering deep analysis of 
application, database, and infrastructure performance. 
LoadRunner specializes in scalable server load testing 
and has limited capabilities for client-side analysis.

The architecture of a software system for intelligent 
analyzing the performance of web applications 
written in JavaScript is proposed, which allows to 
collection of numerical data on factors affecting the 
performance of a web application using regression 
analysis, perform regression analysis to determine the 
assessment of the influence of factors, clustering and 
classification of processed data.

The proposed software system provides 
recommendations for web developers, which must be 
implemented to improve the performance of the web 
application and reduce the load on the web server. 

According to the conducted research, the use of 
regression analysis and classification methods allows 
for an increase in the productivity of web applications 
by an average of 20%.
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Олещенко Л.М., Бурчак П.В. ПРОЕКТУВАННЯ АРХІТЕКТУРИ ПРОГРАМНОЇ СИСТЕМИ 
ДЛЯ ІНТЕЛЕКТУАЛЬНОГО АНАЛІЗУ ПОКАЗНИКІВ 
ПРОДУКТИВНОСТІ ВЕБЗАСТОСУНКІВ

Сьогодні зростає кількість вебзастосунків, які обробляють великі обсяги даних, що створює нові 
виклики для розробників і користувачів. Вебзастосунки, які працюють з великими даними, стають 
важливою частиною бізнесу, державного управління та повсякденного життя, сприяючи підвищенню 
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ефективності, точності та швидкості прийняття рішень. Однак з цим пов'язані численні проблеми, 
такі як забезпечення безпеки та конфіденційності даних, ефективна обробка та зберігання великих 
обсягів інформації, а також необхідність постійного моніторингу і оптимізації продуктивності веб-
застосунків. Управління ресурсами та енергоефективність стають особливо актуальними в умовах 
економії енергоресурсів. Вирішення цих проблем потребує використання новітніх технологій, таких як 
інтелектуальні системи моніторингу та аналізу, що допомагають забезпечити стабільну та ефек-
тивну роботу вебзастосунків в умовах постійного зростання обсягів даних і складності задач. 

Вирішення проблем продуктивності вебзастосунків за допомогою інтелектуальних систем моні-
торингу дозволить розробникам швидко і точно виявляти вузькі місця та оптимізувати код, що, в 
свою чергу, забезпечить кращий користувацький досвід і зменшення витрат на обслуговування. Наразі 
існують невирішені питання, такі як складність інтеграції нових технологій у вже існуючі системи, 
необхідність врахування різноманітних факторів впливу на продуктивність, а також забезпечення 
високого рівня безпеки і конфіденційності даних під час моніторингу. 

У статті проаналізовано наявні програмні рішення Google Lighthouse, Apache JMeter, New Relic, 
Dynatrace, GTmetrix, Pingdom, AppDynamics, WebPage Test, Sentry та LoadRunner, їх функціональні 
можливості, основні переваги та недоліки. Проаналізовано можливості використання технологій 
машинного навчання та штучного інтелекту в розглянутих програмних системах. На основі прове-
деного аналізу запропоновано архітектуру програмної системи для інтелектуального аналізу продук-
тивності вебзастосунків, написаних мовою JavaScript, яка дозволяє виконувати збір числових даних 
про фактори, що впливають на продуктивність вебзастосунку, виконувати регресійний аналіз для 
визначення оцінки впливу факторів, кластеризацію та класифікацію оброблених даних для корек-
тності виділення рекомендацій для розробників, які необхідно вжити задля покращення продуктив-
ності вебзастосунку та зменшення навантаження на вебсервер. Згідно проведених досліджень, вико-
ристання методів машинного навчання в програмних системах аналітики показників вебзастосунків 
дозволяє збільшити продуктивність вебзастосунків в середньому на 20 %.

Ключові слова: архітектура програмної системи, оцінка продуктивності вебзастосунків, 
JavaScript, машинне навчання, АІ, регресійний аналіз, кластеризація, класифікація, нейронні мережі.


