IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

UDC 004.415.2
DOI https://doi.org/10.32782/2663-5941/2024.4/22

Oleshchenko L.M.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Burchak PV,
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

SOFTWARE SYSTEM ARCHITECTURE DEVELOPMENT
FOR INTELLIGENT ANALYSIS OF WEB APPLICATION
PERFORMANCE METRICS

Today the number of web applications that process large amounts of data is increasing, which creates new
challenges for developers and users. Web applications that handle big data are becoming an essential part of
business, government, and everyday life, enhancing efficiency, accuracy, and speed of decision-making. This
brings numerous problems, such as ensuring data security and confidentiality, efficient processing and storage
of large volumes of information, and the need for continuous monitoring and optimization of web application
performance. Resource management and energy efficiency are becoming particularly relevant in the context of
energy savings. Solving these problems requires the use of the latest technologies, such as intelligent monitoring
and analysis systems, which help ensure the stable and efficient operation of web applications in conditions of
constantly increasing data volumes and task complexity. Addressing web application performance issues through
intelligent monitoring systems will enable developers to quickly and accurately identify bottlenecks and optimize
code, which in turn ensures a better user experience and reduces maintenance costs. Unresolved issues include
the complexity of integrating new technologies into existing systems, the need to consider various factors affecting
performance, and ensuring a high level of security and data confidentiality during monitoring.

The article analyzes existing software solutions such as Google Lighthouse, Apache JMeter, New Relic,
Dynatrace, GTmetrix, Pingdom, AppDynamics, WebPage Test, Sentry, and LoadRunner, their functional
capabilities, main advantages, and disadvantages. It examines the possibilities of using machine learning and
artificial intelligence technologies in the considered software systems. Based on the analysis, a software system
architecture is proposed for analyzing the performance of web applications written in JavaScript, which allows
for the collection of numerical data on the factors affecting the performance of the web application, performing
regression analysis to determine the assessment of the influence of factors, clustering and classification of the
processed data for the correctness of the allocation of recommendations for developers, which must be used
in order to improve the performance of the web application and reduce the load on the web server. According
to the conducted research, the use of machine learning methods in software systems for web application
performance analytics can increase the performance of web applications by an average of 20%.

Key words: software system architecture, web application performance evaluation, JavaScript, machine
learning, Al, regression analysis, clustering, classification, neural networks.

Introduction. Problem Statement. Monitoring the
performance of web applications is critical to ensuring
the stable operation of software on the Internet. In
modern realities, when saving resources becomes
critically important, optimizing the performance of web
applications allows to reduce the load on servers and
infrastructure, which, in turn, contributes to reducing
energy consumption. This is especially relevant for
developers who work with the JavaScript language,
as web applications in this programming language
are extremely popular both in Ukraine and around
the world. According to statistics, more than 70% of
modern web applications use the JavaScript language
for the development of the client part, a significant share

of server solutions is also based on Node.js. In Ukraine,
this trend is supported by the wide implementation of
web technologies in various industries, including the
financial sector, education, e-commerce. Using machine
learning (ML) techniques to evaluate the performance of
web applications allows not only to identify bottlenecks
and problems in the execution of the code, but also to
predict potential performance problems, which allows to
take early measures to eliminate them. The development
of such a software system is not only relevant from a
technical point of view, but also contributes to the overall
efficiency of the use of resources, which is an important
contribution to the preservation of the country's energy
resources.

141

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

The main goal of the article is designing a
software system architecture for intelligent analysis
of the performance of web applications written in the
JavaScript language.

Related research. In the article [1] authors analyze
various techniques, including caching, compression,
Content Delivery Networks (CDNs), and tools such
as WebPageTest and YSlow. The research aims to
help Web developers and performance engineers
optimize their websites for improved search engine
rankings.

The paper [2] presents a research on optimizing
trace visualizations for microservices performance
analysis. The authors investigate current limitations in
trace visualization tools and propose novel techniques
for effective performance analysis.

The research paper [3] explored the use of
Dynatrace monitoring data to generate performance
models for Java EE applications. The research aimed
to improve the understanding and optimization of
application performance by leveraging monitoring
data and developing accurate performance models.

The research [4] investigates the process of
storing and managing data in the client side of web
applications, focusing on software methods for local
state management, and demonstrates that using an
atomic approach to data state management with the

Performance Progressive Web App

React Context API reduces data processing time by
17% compared to popular libraries such as Redux,
MobXState-Tree, and Recoil, thereby optimizing state
management and improving overall performance.

Existing software solutions analysis

Google Lighthouse is an open source software tool
that evaluates performance, accessibility, SEO and
other aspects of web applications. Google Lighthouse
performs automated audits to evaluate various
indicators, works on the basis of Chrome DevTools
(Fig. 1). Google Lighthouse specializes in client-
side performance analysis, providing detailed reports
on page rendering, load times, image optimization,
resource size, and overall page speed.

Google Lighthouse has a limited ability to
analyze server performance, it can provide general
recommendations for download speed but does not
provide in-depth analysis [5].

Apache JMeter is a powerful web application load
testing and performance measurement tool that uses
the Java language to create load scripts and can test
various protocols, including HTTP, HTTPS, SOAP,
FTP. JMeter is less suitable for analyzing client-side
performance. The main application of the tool is
server load and performance testing. JMeter is used
for load testing servers, including web servers, APIs,
and databases. The tool can create a heavy load for

9 ® 0 O

Accessibility

Best Practices

Score scale: @ 0-49 @ 50-89 & 90-100

3 Reduce JavaScript execution time

50s A ~

Consider reducing the time spent parsing, compiling, and executing JS. You may
find delivering smaller JS payloads helps with this. Learn more.

URL

/flightselect_dist/polyfills.d0429689....
/flightselect_dist/6.000e012...
/flightselect_dist/main.d618929...

/flightselect_dist/common.f21¢c90b..

JS (www.ryanair.com)
Js (www.ryanair.com)
Jjs (www.ryanair.com)

.j§ (www.ryanair.com)

2,303ms 2,155 ms 5ms
1,367 ms 1,293 ms 1ms
874 ms 868 ms 6 ms
151 ms 147ms 4ms

Fig. 1. Google Lighthouse monitoring results

142 Tom 35 (74) N2 4 2024

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

testing the scalability and performance of the backend
of a web application [6].

New Relic is a cloud platform for monitoring the
performance of web applications in real-time. Uses
agents integrated with server-side programming
languages (Java, Python, Node.js, Ruby, etc.) to
collect data. New Relic offers front-end performance
monitoring tools, including Real User Metrics
(RUM), which show how real users interact with
a web application. New Relic provides deep
back-end monitoring, including server, database,
and infrastructure performance. This allows the
identification of bottlenecks and performance
problems on the server side [7].

Dynatrace is a commercial application performance
monitoring tool, including a detailed analysis of each
transaction, using Al to analyze performance, and
agents to collect data from various system components.
Dynatrace offers comprehensive client-side monitoring,
including analysis of page load times, user interactions,
and JavaScript performance metrics [8].

Dynatrace provides deep back-end analysis,
including monitoring of servers, databases,
microservices, and containers. Al algorithms help
to automatically identify problems and causes of
productivity decline (Fig. 2).

GTmetrix is a tool for analyzing the speed of loading
web pages and providing detailed reports, which uses an
API to receive data from Google Lighthouse and other
sources. GTmetrix focuses on client-side performance
analysis, using Lighthouse and PageSpeed tools to
provide detailed reports on page rendering, resource
loading, and optimization [9].

Pingdom is a tool for monitoring the availability
and performance of websites. The software system

Browser or Rich Client Web Server & PHP Java

uses global servers for availability monitoring, and
APIs for integration with other systems. Pingdom
provides tools to monitor page load speed and client-
side performance and uses real user data to evaluate
user interaction with the web application. Pingdom
does not specialize in backend analysis but only
provides basic information about server availability
and response time [10].

AppDynamics is a commercial application
performance monitoring and user experience
management platform that uses agents to collect
metrics from various system components and
analytical tools for data analysis. AppDynamics
offers tools for monitoring client-side performance,
including real-user metrics and JavaScript analysis.
AppDynamics also provides deep back-end
monitoring, including application, database, and
infrastructure performance analysis. This allows for
identifying bottlenecks and optimizing the client part
of the software [11].

WebPageTest is an open-source tool for measuring
web page performance, providing detailed reports,
using browsers for testing and APIs for automation.
WebPageTest specializes inanalyzing the performance
of the client side of a web application, offers detailed
reports on page load times, resource optimization, and
rendering, and has limited capabilities for analyzing
server performance [12].

Sentry is a commercial platform that monitors
errors and application performance. The advantage of
this platform is integration with various programming
languages and frameworks, and analysis of logs
and metrics. Sentry provides front-end error and
performance monitoring, including JavaScript
analysis and real-time error tracking. Sentry also

Met Many Other Database

-

g

dynaTrace
Collector 1

Performance
Warehouss

—|

(1

Session Store

“TFailover
32 L~

dynaTrace Server

f.‘.h
v re
N -

Agerts
whoaibd b bt
their Colleciors

-

dynaTrace
Collector 2 dynaTrace

Clignt

&)

=—\/ ..

V Tin erw messhing

dynaTrace Frontend Server

Fig. 2. Dynatrace monitoring process [8]

143

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

supports back-end monitoring, including server errors
and back-end performance [13].

LoadRunner is a commercial load-testing tool
created by Micro Focus that supports various
protocols, and load scenarios based on real user
actions. LoadRunner is less suitable for client-side
performance analysis, and specializes in server load
testing, providing scalable tests to determine server
performance under heavy load [14].

Table 1 shows the capabilities of software systems
to analyze the performance of client and server web
applications written in JavaScript.

Google Lighthouse, GTmetrix, WebPageTest,
and Pingdom are compatible with major browsers
such as Chrome, Firefox, Safari, and Edge. Apache
JMeter primarily tests web applications and APIs, not
browser functionality.

New Relic and Dynatrace provide cross-browser
compatibility for monitoring JavaScript errors and
user interactions in Chrome, Firefox, Safari, and
Edge. AppDynamics supports monitoring in all
major browsers. Sentry integrates with most modern
browsers, including Chrome, Firefox, Safari, and
Edge, to catch JavaScript errors. LoadRunner focuses
on performance testing and is compatible with web
applications running in any browser, but does not
provide browser-specific integration features.

Google Lighthouse relies on Chrome DevTools,
limiting its integration flexibility with non-Chrome
test environments. It may struggle with scalability
for over 1,000 requests per minute and lacks support
for large-scale distributed performance testing,

problematic for web applications with more than
100,000 daily requests.

Apache JMeter requires significant configuration,
is challenging for beginners, and its interface slows
with large test plans. Though it supports distributed
testing, managing multiple instances can be
cumbersome, and handling over 10,000 concurrent
users can bottleneck memory usage.

New Relic's setup is complex, with proprietary
limitations and high costs for over 500,000 daily
requests, potentially leading to data processing limits.
Dynatrace's complex setup and reliance on Al for
analysis can obscure problem causes, with scalability
issues due to high costs and significant data storage
needs. GTmetrix's reliance on third-party tools limits
customization, making it less suitable for large-scale
testing of web applications with over 1 million daily
requests.

Pingdom lacks deep server performance analysis
and struggles with over 10,000 requests per second.
AppDynamics offers comprehensive monitoring, but
its high cost and decreased performance with over
1 TB of data per month limit its appeal to small and
medium enterprises.

WebPageTest lacks server-side tools and becomes
resource-intensive with large sites having over
1,000 elements per page. Sentry detects errors but can
delay with over 50,000 events per minute.

LoadRunner, while powerful, is complex and
expensive, and its performance degrades with over
1 million virtual users. As data volumes exceed 10 GB
per day, performance bottlenecks require advanced

Table 1

Capabilities of software systems for analyzing the performance of the client
and server part of web applications and their main limitations

Analysis Analysis .
Software system of the client part of the server part Disadvantages
Google Lighthouse + - May require expertise to interpret the results
Apache IMeter) N Difficulty setting up requires knowledge of Java
programming language
. High cost for large teams
+ +
New Relic (from $99/month for each host)
High cost, complexity of configuration
+ +
Dynatrace (from $69/month for each host)
. Limitations of the free version
+ _
GTmetrix (Pro plans from $10/month)
) High cost for advanced features
+ -
Pingdom (from $15/month)
. High cost, complexity of setup
+ +
AppDynamics (from $330/month)
WebPageTest + - Limited support for other protocols
High cost for large teams
+ +
Sentry (from $29/month), limited functionality
High cost, complexity of setting
- +
LoadRunner (from $4000/year)

144 Tom 35 (74) N2 4 2024

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

data architectures like NoSQL, in-memory data grids,
or cloud storage. Managing distributed components
is challenging, necessitating robust orchestration and
monitoring tools, and addressing network latency
and data consistency issues is critical for maintaining
system performance.

Using machine learning methods and Al to
evaluate the performance of web applications

Google Lighthouse uses Al to analyze various
web performance metrics and suggest specific
improvements for optimization. For example, the
system allows to identify resources that block
rendering and recommend ways to postpone them,
thus speeding up page load time. Regression analysis
is used to predict the performance of web pages based
on historical data.

Google Lighthouse automatically tests web pages
and collects various performance metrics such as
First Contentful Paint (FCP), Time to Interactive
(TTI), Largest Contentful Paint (LCP), Cumulative
Layout Shift (CLS) and others. For example, over the
past month, the Lighthouse system tested the page
100 times and collected data on load time (FCP, TTI),
size of downloaded resources, number of requests,
etc. After collecting the data, Lighthouse applies
regression analysis to identify patterns. For example,
an analysis might show that increasing the size of
images on a page by 1MB results in an increase in
FCP load time of 200ms.

A regression model based on the collected data,
where performance metrics are the dependent
variables and factors such as image sizes, number of
requests, file types, etc. are the independent variables.
Based on the model, it is possible to predict the
performance of web pages when certain parameters
are changed. If we reduce the size of the images by
500KB, the model can show that the FCP load time
will decrease by 100ms.

Web developers can use these predictions to
optimize their pages. For example, they can decide
to optimize images or reduce the number of HTTP
requests based on predictions from regression
analysis to improve overall page performance. Using
regression analysis, Google Lighthouse can find that
every additional 100KB ofimages adds 50ms to FCP's
load time. Web developers can predict that reducing
the total image size by S00KB can reduce FCP load
times by 250ms. This provides concrete numbers to
base optimization decisions on.

The wuse of regression analysis in Google
Lighthouse allows not only to evaluate the current
performance of web pages but also to predict how
certain changes in the code and content will affect

these indicators, which makes the optimization
process more scientific and justified.

Random Forest in Google Lighthouse is used to
classify and evaluate the impact of various factors on
page performance. A random forest is an ensemble
ML method consisting of many decision trees. Each
tree is trained on different subsets of data and subsets
of features, which allows the model to be resistant
to overtraining and more accurate in general cases.
A random forest models the relationship between
a dependent variable (performance measures such
as First Contentful Paint, Time to Interactive) and
independent variables (factors affecting performance
such as image size, number of HTTP requests, and
script loading time).

Lighthouse collects data about web page
performance, including performance metrics and the
factors that influence them. For example, data about
FCP, image size, number of requests, and loading time
of scripts for 1000 web pages is collected. The data
are divided into training and test samples. Prepared
data can look like a table, where rows represent web
pages and columns represent performance metrics
and factors.

A random forest is trained on the training sample.
For example, 100 decision trees are created, where
each tree is trained on a random subset of the data.
A random forest model classifies and evaluates the
impact of various factors on performance.

For example, the model might show that image size
has the greatest impact on FCP, with an importance
score of 0.45, number of requests at 0.30, and script
load time at 0.25. The model uses a trained random
forest to predict the performance of new web pages.
For a web page with an image size of 1800 KB, a
request count of 55, and a script load time of 1200 ms,
the model predicts an FCP of 1600 ms.

Random Forest helps developers understand
which factors most affect the performance of their
web pages and predict how changes in those factors
will affect performance metrics. This allows to make
informed decisions to optimize and improve the speed
of web applications.

GTmetrix uses ML algorithms to predict how
changes to a website might affect its speed and user
interaction.

Gradient boosting is used to more accurately
determine the factors that affect the performance of
web pages. Gradient boosting is an ensemble ML
technique that builds a model by successively adding
weak models (such as decision trees) in such a way
that each successive model tries to correct the errors
of the previous one. GTmetrix collects web page

145

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

performance data, including performance metrics (eg
Page Load Time, First Contentful Paint) and factors
that affect them (eg image size, number of HTTP
requests, script load time).

Gradient boosting in GTmetrix allows to accurately
determine which factors have the greatest impact on
web page performance. For example, if image size turns
out to be the most important factor, developers can focus
on optimizing images to improve page load times.

Classification is used to rank pages by performance
and identify critical areas. GTmetrix uses various
classification methods to analyze and rank web
page performance, such as Decision Trees, Random
Forest, and Support Vector Machine (SVM). Decision
trees are used to identify the most important factors
affecting web page performance. This helps to quickly
identify bottlenecks and areas that need optimization.
A random forest improves the accuracy of predictions
by combining the results of many decision trees.
This provides more reliable and stable performance
analysis results.

WebPagelest uses artificial intelligence (Al)
to simulate various network conditions and user
interactions, providing a more comprehensive
analysis. Neural networks are used for complex
analysis of the influence of various parameters on the
performance of web pages.

Pingdom uses Al to continuously monitor
website uptime and performance. The system can
automatically alert users to performance issues
and suggest potential fixes based on historical data
patterns. If the server is often slow at a certain
time, Pingdom can predict this and notify the user
in advance. Time series analysis is used to predict
downtime and website availability issues. Using
ML techniques such as autocorrelation and moving
averages, the system can detect patterns and anomalies
in time series data. This allows Pingdom to predict
potential downtime and availability issues, providing
users with warnings and recommendations to avoid
them. Logistic regression is used to identify the
probability of problems based on historical data. The
system analyzes various parameters such as response
time, number of requests, throughput, and other
performance indicators to estimate the probability
of failures or downtime. Logistic regression can be
used to create models that predict the risk of problems
based on input data.

Apache JMeter mainly focuses on load and
performance testing of web applications and APIs.
By integrating ML, JMeter can detect anomalies
in performance data, such as unexpected spikes
in response time, and automatically flag them for

146 Tom 35 (74) N2 4 2024

further investigation. K-means clustering is used to
group similar queries or transactions based on their
performance and behavioral characteristics and
to identify atypical test results that may indicate
performance issues. When testing a web application,
we can collect response time data for various requests.
Using the K-means algorithm, these queries can be
grouped into several clusters, such as fast, medium
and slow queries. This allows to identify groups of
requests that have similar performance and identify
critical areas that need optimization.

New Relic uses Al and ML for predictive analytics
and performance monitoring. The system can
automatically detect performance bottlenecks and
provide recommendations to optimize web application
performance. For example, New Relic can analyze
transaction traces to pinpoint slow queries and suggest
methods for indexing or optimizing queries. Linear
regression is used in New Relic to analyze trends in
performance data to predict future problems.

Dynatrace uses Al for root cause analysis
and predictive analytics. Its Davis Al engine
automatically correlates performance data across
the entire application stack, identifying the root
cause of problems without manual intervention.
For example, if a specific microservice is causing
slowdowns, Davis Al can highlight it and suggest
steps to fix it. Recurrent neural networks (RNNs) are
used to analyze time series and predict server loads.
Reinforcement learning uses automatic changes in
system configurations.

AppDynamics uses Al anomaly detection to
monitor application performance, can automatically
detect deviations from normal behavior, and
perform detailed diagnostics. For example, if a
certain transaction starts taking longer than usual,
AppDynamics can flag this and offer insight into
whether the problem is in the database, server, or
network. A decision tree is used to identify critical
paths in code that affect performance. Anomaly
detection is used to automatically detect deviations in
system performance.

Sentry integrates ML to prioritize and cluster bugs,
helping developers focus on the most critical issues.
For example, Sentry can automatically group similar
bugs together and rank them based on their impact,
allowing developers to prioritize the most pressing
issues. Clustering is used to group similar errors and
identify therootcauses of problems. For this, clustering
methods such as K-means or Density-Based Spatial
Clustering of Applications with Noise (DBSCAN)
are used. K-means clustering helps identify groups of
similar errors based on their characteristics, such as

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

error messages and call stacks. DBSCAN is used to
detect high-density clusters in error data, allowing the
detection of sporadic or rare errors that may have a
significant impact on the system.

Deep learning in Sentry is used to automatically
prioritize errors and their criticality. For example,
RNNs can analyze a sequence of errors and identify
patterns that allow predicting the probability of future
failures. Convolutional Neural Networks (CNNs) can
be applied to analyze logs and traces, automatically
classifying errors according to their criticality. This
allows developers quickly determine which errors
have the greatest impact on the system.

LoadRunner uses Al to simulate realistic user
behavior patterns and predict system performance
under various loads. It can model complex user
interactions and analyze how they affect system
performance, helping to ensure that applications
can handle real-world usage scenarios. Regression
analysis is used to determine the effect of various
factors on performance during stress tests. Anomaly
detection is used to detect unexpected behaviors when
testing a system under load.

Software system architecture designing for
intelligent analysis of web application performance

In the research, we use regression analysis to
predict the impact of changes on page performance.
Regression analysis is used to predict the performance
of web pages based on several independent variables.

The main independent variables include: time to
the first byte (Time to First Byte, TTFB), which
is measured in milliseconds (ms) and indicates the
time required by the server to respond; the loading
time of the first content image (First Contentful
Paint, FCP), also measured in milliseconds (ms)
and indicates when the first image or text appears
on the screen; speed index (Speed Index), which is
measured in milliseconds (ms) and shows the speed of
page content display; the number of HTTP requests
(Number of Requests), measured by the number of
requests and indicating the total number of requests
required to download all page resources; and the total
size of downloaded resources (Total Page Weight),
measured in kilobytes (KB) or megabytes (MB) and
indicate the total size of all downloaded resources.
These variables are used to build a regression model
that helps determine how each of these factors affects
overall page performance, allowing for more accurate
predictions and identifying underlying issues.

CNNs we use to analyze images and videos,
which can be useful for evaluating visual aspects of
web page performance, such as image and video load
times. The CNN neural network allows to analyze

screenshots of web pages at different stages of loading
to discover which elements appear earlier or later and
how this affects the user's perception.

LSTM (Long Short-Term Memory) or GRU
(Gated Recurrent Unit) are used to analyze data
sequences. They are used for modeling user
interaction, which is a sequence of actions. RNNs can
model user click sequences and their site navigation,
taking into account previous actions to predict next
steps and assess how interface changes may affect
overall performance.

Software system collects a large amount of data
about user interaction with web pages, including
loading times of various resources, clicks, page
scrolling, etc. The data is cleaned and converted
into a format suitable for training neural networks.
For example, images can be normalized, and click
sequences can be encoded.

CNNss are trained on images or videos to recognize
patterns related to page load times and rendering.
RNNSs learn from sequences of clicks and other user
interactions to understand behavioral patterns and
predict future actions.

After training, models analyze new data about
user interactions and network conditions. Simulating
different scenarios (such as low network bandwidth)
allows to evaluate how these conditions affect
performance. Analysis results are used to generate
performance optimization recommendations. If CNN
finds that large images have a strong impact on load
times, it can suggest optimizing the images or using
responsive formats. According to the research, using
neural networks, the performance of web applications
can increase on average by 15-20%. Neural networks
allow more accurate analysis of the impact of various
parameters on the performance of web pages by
modeling complex user interactions and network
conditions.

Designing a software system architecture for
evaluating the performance of web applications using
regression analysis uses the integration of several
components to provide data collection, processing,
and analysis. The data obtained from such a model
will be used in the sub calculations of the assessment
of the impact of various factors on the system. Below
is a list of such factors:

— server factors: include data on processor load
time and the amount of RAM used;

— factors of the web application client: response
time, request frequency, error frequency, session
duration;

— data source factors: database query time, number
of active connections;

147

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

— infrastructure factors: server configuration,
percentage of cached data, load distribution system
performance;

— user factors: location, browser, device type;

— time factors: time of day, day of the week.

A classification method should be used in the
architecture of this system, this will help to divide the
data into different categories or classes based on a set of
input variables. Such separation will make it possible
to provide system users with better recommendations
for improving the performance of the web application.
Decision trees are used to hierarchically divide data
into subsets based on the values of the input variables.
They work by building a hierarchical structure where
each node represents a condition on one of the input
variables and each branch is the result of that condition,
eventually leading to leaves that contain the final
solution or class.

In the context of web applications, decision
trees can be used to classify requests into different
performance categories, such as fast, medium, or
slow responses. With the help of the classification
of requests, we can determine which of them load
the system the most, and take measures to optimize
their processing. This may include changes to the
web application architecture, code improvements, or
server configuration (Fig. 3).

Research results. Classification methods
provides more accurate predictions about web page

Classification

Data analysis Data

performance and improve user experience, to 10-15%
faster page load times and a better user experience,
which in turn can lower bounce rates and increase
web applications user satisfaction.

Clustering helps identify patterns in query
behavior that can point to specific conditions
or configurations that are causing performance
degradation. This, in turn, allows for more targeted
and detailed optimization, which can reduce response
time by 15-20% for the slowest requests.

The use of time series analysis and logistic
regression allows for significant improvement in the
management of website performance and availability.
This provides in some cases to 20-30% reduction in
downtime, which in turn increases the reliability and
stability of websites, improving the user experience
and reducing the financial losses associated with site
unavailability.

With the help of linear regression, we can analyze
the response time of requests and determine the
growth trends of this indicator. If the regression model
shows a steady increase in response time, this may
signal potential performance issues that may arise
in the future. Identifying such trends allows to take
preventive measures, such as optimizing the code or
increasing server resources, to avoid a decrease in the
performance of the web application. Such forecasting
helps reduce downtime by 10-15% and ensures more
stable system operation.

Regresssion
analysis

Productivity factors

Generate analysis
report

Artifacts Audit
FSON results
Report Generation
Categories: Factors:
1. Server
1. PWA !

2. Client

2.Performance 3 Dets Son o
3. Accessibility :

4. User based data

4. Best Practises 5. Timestamp data

]

Protocol

|

Devtool:

Repost results displayed

(Driver }

Connection >

Fig. 3. The proposed architecture of the software system for intelligent analysis
of the performance of web applications

148 Tom 35 (74) N2 4 2024

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

Deep Neural Networks (DNNs) are used for
complex analysis and predictions, including user
behavior and system load. DNNs can analyze historical
data about server loads during peak periods and predict
when similar peak loads can be expected next time.
This allows a configuration of additional resources
in advance or optimize existing ones to cope with the
expected increase in load. As a result of such measures,
system performance is improved during peak loads,
reducing the risk of downtime and ensuring continuity of
service to users. This approach can increase the overall
efficiency of the system in some cases by 20-25%,
which significantly improves the user experience.

Conclusions and future work. The article
discusses the analysis of available software solutions
for evaluating the performance of web applications.
Not all considered software systems are equally
well suited for analyzing the performance of web
applications written in JavaScript. Some have
strengths on the client side, others on the server side,
and some offer comprehensive analysis.

Google Lighthouse, GTmetrix, Pingdom, and
WebPageTest are good for detailed client-side
performance analysis but have limited capabilities

for back-end analysis. Apache JMeter is a powerful
tool for server load testing, but less suitable for client-
side analysis. New Relic, Dynatrace, AppDynamics,
and Sentry provide end-to-end monitoring, covering
both the client and backend, offering deep analysis of
application, database, and infrastructure performance.
LoadRunner specializes in scalable server load testing
and has limited capabilities for client-side analysis.

The architecture of a software system for intelligent
analyzing the performance of web applications
written in JavaScript is proposed, which allows to
collection of numerical data on factors affecting the
performance of a web application using regression
analysis, perform regression analysis to determine the
assessment of the influence of factors, clustering and
classification of processed data.

The proposed software system provides
recommendations for web developers, which must be
implemented to improve the performance of the web
application and reduce the load on the web server.

According to the conducted research, the use of
regression analysis and classification methods allows
for an increase in the productivity of web applications
by an average of 20%.

Bibliography:
1. Shailesh S., Suresh P.V. A Survey and Analysis of Techniques and Tools for Web Performance Optimization.
Journal of Information Organization. 2018. Vol. 8. Ne 2, P. 31-57. DOI: 10.6025/ji0/2018/8/2/31-57.
2. Leone J. and Traini L. Enhancing Trace Visualizations for Microservices Performance Analysis. Companion
of the 2023 ACM/SPEC International Conference on Performance Engineering. 2023. P. 283-287. https://doi.

org/10.1145/3578245.3584729.

3. Willnecker Felix, Andreas Brunnert, Wolfgang Gottesheim and Helmut Kremar. Using Dynatrace
Monitoring Data for Generating Performance Models of Java EE Applications. Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. 2015. P. 103—104. DOI:10.1145/2668930.2688061.

4. Oleshchenko L., Burchak P. Web Application State Management Performance Optimization Methods.
Advances in Computer Science for Engineering and Education VI. ICCSEEA 2023. Lecture Notes on Data
Engineering and Communications Technologies. 2023. vol. 181. P. 59-74. Springer, Cham. https://doi.

org/10.1007/978-3-031-36118-0_6.

5. Google Lighthouse. https://developer.chrome.com/docs/lighthouse/overview

6. Apache JMeter. https://jmeter.apache.org/

7. New Relic. https://newrelic.com/

8. Dynatrace. https://www.dynatrace.com/

9. GTmetrix. https://gtmetrix.com/

10. Pingdom. https://www.pingdom.com/

11. AppDynamics. https://www.appdynamics.com/
12. WebPageTest. https://www.webpagetest.org/
13. Sentry. https://sentry.io/welcome/

14. LoadRunner. https://www.opentext.com/en-gb/products/loadrunner-professional

Outemenko JI.M., Bypuax IL.B. TIPOEKTYBAHHS APXITEKTYPH ITPOT'PAMHOI CUCTEMH
JJISA IHTEJIEKTYAJIBHOT'O AHAJII3Y IIOKA3ZHUKIB

HNPOAYKTUBHOCTI BEB3ACTOCYHKIB

Cb0200Hi 3pocmac KinvKicms 6e03acmoCcyHKI6, AKi 00poonsioms 6enuxi odcaeu 0aHUx, Wo Cmeopioc HOGi

BUKIUKU 01 PO3POOHUKIE | Kopucmyeaui. Bebzacmocynku, AKi npayioioms 3 6eIUKUMU OAHUMU, CMAIOMb
BAICTUBOIO UACTNUHOTIO OI3HECY, 0ePAHCABHO20 YNPABTIHHA A NOBCAKOCHHO20 JHCUMMS, CAPUSIOUU NIOBULYEHHIO

149

Bueni sanucku THY imeni B.1. Bepnaacbkoro. Cepisa: Texniuni Hayku

egexmusHocmi, mouyHocmi ma weuoxocmi nputinamms piuterv. OOnax 3 yum nos'sa3ani yucienui npooiemu,
maki sax 3abe3nevents Oe3nexu ma KOH@IOeHyitinocmi 0anux, eghekmuena oopodKa ma 30epieants GeIUKUX
00cA2i6 iHghopmayii, a maxodic HeoOXiOHICMb NOCMIUHO20 MOHIMOPUHRY | onmumizayii npoOyKmueHocmi 6eo-
3aCMOCYHKIB. YNpasninmsa pecypcamu ma eHepeoehekmusHicms cmanms 0coOIU80 AKMyatbHUMU 8 YMO8AX
eKoHOoMII eHepeopecypcis. Bupiwienus yux npodiem nompedye UKOPUCMAHHS HOBIMHIX MEeXHOLO02I, MaKUX 5K
IHmMeneKmyanvbti cucmemy MOHIMOPUHSY mMa aHAli3y, Wo 00NOMA2amy 3abesneuumu cmadbiloHy ma eqgex-
mueHy pobonty 6e03aCmMOCYHKIE 8 YMOBAX NOCMIUHO20 3POCMANHI 00CA2i8 OaHUX I CKIAOHOCMI 3a0aH.

Bupiwenns npobnem npodykmusnocmi e03acmocymKie 3a 00NOMo2010 iHMeNeKMyarbHUX CUCMeM MOHi-
MOPUHSY 003601UMb PO3POOHUKAM WEUOKO | MOUHO BUAGIAMU 8V3bKI MICYs ma Onmumizyeamu Koo, wo, 8
€B010 uepey, 3abe3neyums Kpawuii KOpucmysaybkuil 00cseio i 3MeHuen s: sumpam Ha oocryzosyeanns. Hapasi
ICHYIOMb HesUpiuleHi NUMAHHI, MAKi K CKIAOHICMb IHmMe2payii HOB8UX MexHON02Il) 8Jice ICHYIOUI CUCmemu,
HeoOXIOHICMb 8pAXY6ANHS PISHOMAHIMHUX DAKMOPIE 6NAUEY HA NPOOYKIMUGHICTb, d MAKOC 300e3neueHHs.
BUCOKO20 pigHs besneku i KOHGhioenyitinocmi Oanux nio 4ac MOHIMOPUHeY.

Y emammi npoananizosano naseni npocpamui piwenns Google Lighthouse, Apache JMeter, New Relic,
Dynatrace, GTmetrix, Pingdom, AppDynamics, WebPage Test, Sentry ma LoadRunner, ix ¢gynxyionanvui
MOJICIUBOCHE, OCHOGHI nepesazu ma Hedoniku. IIpoananizogano ModNciu8oCmi SUKOPUCHIAHHS MEXHON02Il
MAUUHHO20 HAGYAHHS MA WMYYHO20 THMENIeKMY 8 PO32IAHYMUX npocpamuux cucmemax. Ha ocnosi npose-
0eH020 aHai3y 3anPonoHOBAHO APXIMEKMYpPY NPOSPAMHOL cucmemu OJisl IHMeLeKmyaibH020 AHANi3y NPOOYK-
MUSHOCMI 6e03ACMOCYHKIB, HAnUcanux moeoio JavaScript, axa 0036015€ BUKOHYS8AMU 30ip YUCIOBUX OAHUX
npo axmopu, wo énaUealoMms Ha NPOOYKMUGHICIb 6€03ACMOCYHKY, SUKOHY8AMU pecpecilinuil ananiz Ol
BUBHAYEHHS. OYIHKU GNAUBY (DAKmMOpis, Kiacmepuzayilo ma Kiacu@ikayito oOpobienux Oaumux OJis KOpek-
MHOCMI BUOLNEHHS peKoMeHOayill 015 pO3POOHUKIE, AKI HEOOXIOHO 6dcUmMU 3a0 NOKPAUCHHS NPOOYKMUG-
HOCMI 603ACMOCYHKY Ma 3MEHUEHHS HABAHMAICEHHS Ha ebcepsep. 32I0HO NPOGedeHUX O0CAIONCEHb, BUKO-
PpUCMAanHA Memooié MAWUHHO20 HAGUAHHS 8 NPOSPAMHUX CUCTNEMAX AHALIMUKYU NOKA3HUKIE 6e03ACTOCYHKIG
00360715€ 30LMbUUMU NPOOYKIMUBHICTNE 8e03aCmMOCYHKI 6 cepeonbomy Ha 20 %.

Knwuogi cnosa: apximexmypa npocpamuoi cucmemu, OYiHKA NpOOYKMUSHOCHI 6e03ACMOCYHKIS,
JavaScript, mawunne nasuanns, Al, peepecitinuii ananis, kiacmepuzayis, Kiacugikayis, HetpouHi Mepedici.

150 Tom 35 (74) N@ 4 2024

